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1. Introduction 

There are two fundamental operations in the load measurement 

problem on an aircraft structure. In the first part, we perform 

a system identification by measuring the responses of the strain 

gages mounted on different locations of the structure from a 

series of known applied load at various specified load points on 

the structure during the calibration stage on the ground. 

second part, by using some characterization of the system 

obtained in the first part, we can predict the actual equivalent 

load value and location from the gage measurements during a 

flight. Various known successful approaches and results have 

been reported in the past on the load measurement problem [l-33. 

In the 

There are two fundamental and intuitively equally justifiable 

linear approaches (arbitrarily denoted as Approach 1 and Approach 

2 in Section 2 ) applicable to the load measurement problem. In 

Approach 1, we model the load value matrix L as dependent 
linearly on the influence coefficient value matrix l$ measured by 

the gages. In Approach 2, we model as dependent linearly on &. 

In general these matrices are rectangular, thus it is not immedi- 

ately clear that these two approaches are equivalent. 

cally, all the work in [l-31 were based on that of Approach 1. 

In Section 2, we shall show that these two approaches are indeed 

equivalent in all cases, and can be proved by the use of the 

modern Singular Value Decomposition (SVD) technique. On the 

other hand, if we only use the more conventional and previously 

Histori- 
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used normal equation technique [l-31 (also called the linear 

regression technique), then the limitation of this analytical 

technique can only show the validity of Approach 1 when the 

number of gages n is less or equal to the number of loads m. In 

addition, by using the normal equation approach, it is only 

possible to handle these problems with n greater or equal to m 

from the Approach 2 point of view. There are several theoreti- 

cal, practical, and computational consequences to these observa- 

tions. 

At the most basic level of understanding, of course, it is 

theoretically important to know the equivalency of these two 

seemingly different approaches that yield the desired result. 

the practical algorithmic operational level, the inadmissibility 

of having the number of gages n greater than the number of 

applied loads m in the calibration stage in Approach 1 is not 

fatal. However, as we shall show in Section 3, for the multi- 

stage load estimation technique (which can yield extremely accu- 

rate load predictions), we will always use more gages than the 

number of loads in the prediction stage. Conventional normal 

equation approach (i.e., Approach 1) is not possible since a 

crucially needed matrix involved in the processing is singular. 

At 

When the data from the gages are quite linearly independent, 

then there is no significant numerical difference between the use 

of the SVD technique or the normal equation technique. However, 

f o r  highly dependent data, there can be significant advantages 

for the SVD technique. Detailed numerical computations based on 
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practical observed gage measurements and load values are neces- 

sary to verify their differences. The crucial point is that in 

all cases, the SVD approach is always computationally more costly 

as well as numerically more stable. For dimensions encountered 

in the load measurement problems, the additional computational 

cost of the SVD approach is not significant to be of concern. 
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2. Two Equivalent Approaches to Load Measurement Evaluations 

Now, we consider two possible basic equivalent approaches for 

load measurements. These approaches are denoted as Approach 1 

and Approach 2. 

2.1 Approach 1 - Linear Dependency of Load Values on Gage Val- 
ues 

Consider 

(1) 4 = 141, 421 431, 

the m x 3 load matrix, where 
- (2) 21 - -Ls = [Sir S2,*.*r S,I', 

is the shear vector at m load locations (Xi, Yi), 

B m l ' r  - (3) 42 - LB = [Blr B ~ I * = * I  

is the bending moment vector with its i-th component located at 

yi given by 

( 4  1 Bi = Siyi i=l,...,m, 

and 

( 5 )  4 3  = LT = [Tj,*-*i Tml', 

is the torque vector with its i-th component located at Xi given 

by 

( 6 )  Ti = SiXi, i=l,...,m. 

Let the m x n influence coefficient matrix M denote the 

response of the n gages to the m loads in the calibration pro- 

cess. Specifically, let 
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( 7 )  l! = [ulr***r~nl = 

where each Uit i=l,...,n, represents the normalized response of 

the i-th gages to the m loads. 

cient matrix b consists of 

Let the n x 3 dependency coeffi- 

( 8 )  h = [bp b2, b,l, 
where 

(9) hi = E bj, i=l,2,3, 

or in matrix form 

(10) & =  Mb. 

For i=1, the n x 1 vector hi yields the dependency of 

L,, the shear vector, to the linear combinations of the influence 

coefficient vectors {u l ,  ..., un) of in (7). Similarly, for i = 

2 and 3, b2 and b3 are related to the bending moment vector &2 = 

LB and the torque moment vector L3 =,&, respectively. 

= 

In the calibration process, the matrix as well as 41, &2, 

and L3 are available. 
matrix from the %orma1 equation" point of view as 

(11) B+ = @?'MI -lM/. - 
We note, in (11) is defined if and only if m 2 n and all columns 

of M are linearly independent. In particular, if n > m, then in 

(11) is not defined. 

Define the pseudo-inverse of as a nxm 
I 

I 

Then (9) becomes , 
(12) Bi = a+ Li i=1,2,3. 

By using the notation of in (8) and & in (1) I (12) can be 

written in matrix form as 
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In the prediction process, we observe one 1 x n dimensional - 
gage measurement vector (corresponding to the first row vector 

of H in From the predicted 1 x 3  load vector is 

given by 

(14) L = [St B, T] = H b = &f H-l L = M (H'H)'l H'J. 

The first component of L yields the predicted shear, 

- - - -  - - - 
A 

- - 
(15) s = M+ Ll, 

the second and third components of 

moment B = Sy and predicted torque T = Sx, 

yield the predicted bending - -- - -- 

- - -  - 
(16) B = S y = M 142, 

(17) T = S X = H M+ L3. 
- 

- 
From (15) and (16), we can solve for y as 

(18) - H M+ L2 

M H+ Id1 

- M M+ L3 

M M+ L1 

Y =  I - 
- 

and x as - 
(19) x =  - 
Thus, (15), (18) and (19) represent the predicted equivalent net 

shear, bending moment location, and torque location of the 

applied load that yielded the measured gage vector 
- 
using the 

normal equation approach. 

Now consider the use of the SVD technique via Approach 1. 

Consider a general form of the SVD of the matrix with rank p 
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S min(m,n) as given by 

(20) = UM ZM V'M I 

where UM is a m x m orthogonal matrix, p ' ~  is a n x n orthogonal 

matrix, and EM is a m x n matrix where the upper left p x p sec- 

tion is a diagonal matrix with positive singular values (S.V.) 

denoted by u1 2 a2 2 ... 2 up > 0, and the remaining section is 

the zeroth matrix. 

m matrix denoted by E++, and from the SVD point of view is then 

given by 

The pseudo-inverse of the matrix H, is a n x 

(21) @+ = IM ZM+ UM', 
where EM+ is a n x m matrix where the upper left p x p section is 
a diagonal matrix with reciprocal of the positive singular values 

of E, and the remaining section is the zeroth matrix. Then by 

using (21) in (10) , we have 
(22) - M++ L = . 
We note, (22) corresponds to (13) in the calibration stage of the 

previously considered normal equation technique. Then in the 

prediction stage, we have 

It is most interesting to note, that the predicted load vector in 

(23) based on the SVD technique has the same form as the pre- 

dicted load vector in (14) based on the normal equation tech- 

nique. Indeed, when m 2 n (i.e., the number of loads is greater or 

equal to the number of gages), and when the gage measurements are 

quite linearly independent, the pseudo-inverse given by E++ in 
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(21) is equal to the pseudo-inverse given by & in (11). 
those cases, either the conventional normal equation or the SVD 

methods will yield the same predicted load values. Of course, when 

the measurement values are quite linearly dependent, then the SVD 

approach will be better from the numerical stability point of view. 

As mentioned earlier, when n > m, the normal equation method is 

not applicable for Approach 1 since & in (11) is not defined. 
However, the results of (21)-(23) under the SVD method for 

Approach 1 are valid in all cases including n > m. 

Thus, in 

2.2 Approach 2 - Linear Dependency of Gage Values on Load Values 
From a physical cause and effect point of view, it makes 

sense that the responses of the first gage to the m loads are 

given by, 

In (24), we are describing the gage measurement Uli as a 

linear combination of sicll + siyic12 + S ~ X ~ C I ~ ,  which depends 

linearly on the shear, bending moment and torque. In general, 

for all n gages, we have, 
- (25) H = [ul,-*-r U,] - & [ ~ l r - * * ~ n l  

- - & c, 
where the 3 x n dependency matrix C is denoted by, 

( 2 6 )  C = [GI, ,Gnl* 
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In the calibration process, as before, and I! are available. In 

the prediction process, as before, we have a measured H, given 
- 

from (25) as - 
(27) M = L C .  
In order to solve for the 1 x 3 predicted load vector - - - -  
( 2 8 )  L = [ s, B, 2. I ,  

we need to use (25) and (27). First, consider the use of the 

normal equation technique. Let the psudeo-inverse of h be 

denoted by 

(29) - L+ = (L'L)'lL'. 

By using (29) in ( 2 5 ) ,  we have 

( 3 0 )  - c = L+ M. 
Substituting (30) in (27), we obtain 

(31) - M = Z L + M .  

Now, in order to solve for L, we need to multiply both sides of 

- 
- 

(31) by M' from the right and try to take inverse. Unfortu- 

nately, since M is a m x n matrix, if m > n (which is often the 

case), then (m') is singular and then does not exist. 

Thus, in this case, it is not Dossible to use the normal equation 

technique based on Approach 2. When n 2 m, then direct solution 

of (31) yields - 
(32) L = M M  ' (- MM,)-1 - L . 
By comparing (32) of Approach 2 (valid for n 2 m) to (14) of 

Approach 1 (valid for m 2 n), we see that only when m = n are 

these two approaches yield identical results. 
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Now, consider solving for in (25) by using the pseudo- 

inverse of & based on the SVD representation of &. Specifically, 

consider the SVD of L as given by 

(33) - L = v, c, YL8, 

where IJL is a m x m orthogonal matrix, YL is a 3 x 3 orthogonal 
matrix, and 2, is a m x 3 matrix of the form of 

where the top 3x3 sub-matrix is a diagonal matrix of singular 

values aL1 2 aL2 2 aL3 > 0 and the remaining (m-3) x3 sub-matrix 

is an all zero matrix. Then (25) becomes 

(35) - M = VL CL XL' C. 
By using (30) and (33) in (35), we have 

(37) 
0 l/a3 : " I .  . 0 

In particular, we note 

(38) HL+ c, = x3 

By using (36) in (27), we have - - 
(39) I!! = L YL CL+ UL' H 
Now consider the use of the SVD representation of M given by (20) 
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Direct solution of in (42) yields - 
(43) L = i & p + L .  

By comparing (43) to that of (23), we see that by using the SVD 

technique, both Approaches 1 and 2 yield the same predicted load 

vector, for all cases of m and n (i.e., m 2 n or n > m). But as 

discussed earlier, by using the normal equation technique, 

Approach 1 is applicable only for m 2 n, while Approach 2 is 

applicable only for n 2 m. Furthermore, the predicted & in (14) 

under Approach 1 and (32) under Approach 2 are equivalent only 

for m = n. 
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3. Multi-Stage Load Estimation Technique (MUSLET) 

Now, we consider a new proposed MUlti-Stage Load EsTimation 

technique (which we shall denote as MUSLET) for a more accurate 

prediction of the load value. As considered in Sections 1 and 2, 

the load matrix & in equation (1) and the gage measurement matrix 

in (7) are needed to estimate the dependency matrix B in 
Approach 1 and the dependency matrix c in Approach 2. 

case, if we actually know more accurately the true value of the 

load location, then we need to use only those load locations that 

are close (or closest) to the true load location in the calibra- 

tion process to yield a more appropriate 

yield a more accurate predicted load value and location. 

analogous argument to this technique is that in numerical analy- 

sis, only the relevant near by x-y points to the desired x loca- 

tion are used to perform a numerical interpolation. The set of 

far away x-y points may introduce more errors rather than provide 

the desired smoothing effects in the interpolation process. Ini- 

tial numerical experiments based on the HWTS Loads Calibration 

Data of 8/29/76 showed that suppose the 10th calibration load is 

removed from the actual system identification calibration pro- 

cess. 

measurements, the initial predicted bending moment y location was 

given as 80.3 and the predicted torque x location was given as 

60.2. The true locations were 81.3 and 60 respectively. How- 

In either 

or E which in turn can 

An 

By using the remaining 17 load conditions and 15 gage 
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ever, from this initial prediction result, we can use only these 

calibration points with similar or close y values to 80.3. In 

this example, we can use only loads labeled as (7;8;9;11} with 

calibration load values situated at y = 81.3. The newly predicted 

y value now becomes 81.29992. Similarly, the closest x values in 

the calibration stage are given by loads labeled as (3;4;5;9;11; 

15;17;18). 

We note the original predicted values have errors of have errors 

of 1.23% in y and 0.34% in x, while the iterated second stage 

prediction has errors of only 0.0001% in y and 0.19% in x. Thus, 

this MUSLET technique appears to be able to yield significant 

improvement in load predictions. Many variations of the above 

simple proposed iteration schemes are possible and will be 

further investigated. 

The newly predicted x value is now given by 59.84374. 
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4. Conclusions 

In this research period from January 1987 to March 1988, we 

have performed various basic research on efficient load measure- 

ment estimation techniques for aircraft structure analysis. In 

Section 1, we presented an over view of the load measurement 

problem. In Section 2, we considered two basic equivalent 

approaches to load measurement evaluations. Under Approach 1, 

the load values are modeled as depending linearly on the measured 

values. Under Approach 2, the measured values depend linearly on 

the load values. By using the modern SVD method, we showed that 

under all conditions of the number of loads m and number of gages 

n, Approach 1 is equivalent to Approach 2. By using the conven- 

tional normal equation (or linear regression) approach, Approach 

1 is only valid for m 2 n (which is commonly encountered case), 

while Approach 2 is valid only for n 2 m. Furthermore, except 

for the case of m = n, the load prediction formulas under the two 

approaches are not equivalent. 

In many practical flight testing situations, we may not be 

able to use as many gages as those used in the calibration pro- 

cess. Thus, there is much interest in finding the most efficient 

set of n gages to be used for predictions. 

formed exhaustive tests on various subsets of the available gages 

and associated load measurements. Preliminary investigations 

show this approach also to be meaningful. 

based on DIStributed Load EsTimation (DISLET) performs a series 

We have also per- 

Another approach 
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expansion of the fight measured gage data vector in terms of the 

calibration measured gage data vectors. 

expansion indicates the amount of load distributions during 

flight relative to the m calibration load points. 

analytical and computational investigations are under study. 

Another multi-dimensional cluster analysis relevant in the effi- 

cient reduction of gages, also based on the use of SVD technique, 

has also been under consideration and will be reported on in the 

future. 

Coefficients of this 

Further 

Finally, in [ 4 ] ,  we have published a basic research paper on 

the effective use of singular values in estimation problems for 

data contaminated by Gaussian noise. The results in [ 4 ]  yielded 

tighter performance bounds as compared to all previously known 

results in this field. 
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